Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil

نویسندگان

  • Soniya Dhanjal
  • Swaranjit Singh Cameotra
چکیده

BACKGROUND Microorganisms that are exposed to pollutants in the environment, such as metals/metalloids, have a remarkable ability to fight the metal stress by various mechanisms. These metal-microbe interactions have already found an important role in biotechnological applications. It is only recently that microorganisms have been explored as potential biofactories for synthesis of metal/metalloid nanoparticles. Biosynthesis of selenium (Se 0) nanospheres in aerobic conditions by a bacterial strain isolated from the coalmine soil is reported in the present study. RESULTS The strain CM100B, identified as Bacillus cereus by morphological, biochemical and 16S rRNA gene sequencing [GenBank:GU551935.1] was studied for its ability to generate selenium nanoparticles (SNs) by transformation of toxic selenite (SeO3(2-)) anions into red elemental selenium (Se 0) under aerobic conditions. Also, the ability of the strain to tolerate high levels of toxic selenite ions was studied by challenging the microbe with different concentrations of sodium selenite (0.5 mM-10 mM). ESEM, AFM and SEM studies revealed the spherical Se 0 nanospheres adhering to bacterial biomass as well as present as free particles. The TEM microscopy showed the accumulation of spherical nanostructures as intracellular and extracellular deposits. The deposits were identified as element selenium by EDX analysis. This is also indicated by the red coloration of the culture broth that starts within 2-3 h of exposure to selenite oxyions. Selenium nanoparticles (SNs) were further characterized by UV-Visible spectroscopy, TEM and zeta potential measurement. The size of nanospheres was in the range of 150-200 nm with high negative charge of -46.86 mV. CONCLUSIONS This bacterial isolate has the potential to be used as a bionanofactory for the synthesis of stable, nearly monodisperse Se 0 nanoparticles as well as for detoxification of the toxic selenite anions in the environment. A hypothetical mechanism for the biogenesis of selenium nanoparticles (SNs) involving membrane associated reductase enzyme(s) that reduces selenite (SeO3(2-)) to Se 0 through electron shuttle enzymatic metal reduction process has been proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chitinase Isolated from Water and Soil Bacteria in Shrimp farming Ponds

 Chitinases have received attention because of their wide applications in the medicine, biotechnology, agriculture, waste management and industrial applications such as food quality enhancer and biopesticide. Excessive use of insecticides has led to several problems related to pollution and environmental degradation. In this study, isolation and identification of native bacterial strains with c...

متن کامل

Chitinase Isolated from Water and Soil Bacteria in Shrimp farming Ponds

 Chitinases have received attention because of their wide applications in the medicine, biotechnology, agriculture, waste management and industrial applications such as food quality enhancer and biopesticide. Excessive use of insecticides has led to several problems related to pollution and environmental degradation. In this study, isolation and identification of native bacterial strai...

متن کامل

Se (IV) triggers faster Te (IV) reduction by soil isolates of heterotrophic aerobic bacteria: formation of extracellular SeTe nanospheres

BACKGROUND Selenium and Tellurium have many common chemical properties as both belong to group 16 of the periodic table. High toxicities of Se and Te oxyanions cause environmental problems in contaminated soils and waters. Three strains (C4, C6 and C7) of selenite reducing and nanoparticle forming aerobic bacteria which were isolated from agricultural soils of India containing high concentratio...

متن کامل

Investigation of Acid-Neutralizing Property of Bacillus cereus GUF8

Extreme pHs, especially acidic pHs, are among the environmental stresses that some bacteria face. The most important strategies that bacteria employ for acid adaptation include either production of acidophilic proteins, or raising the pH of the microenvironment by secretion of basic compounds including ammonia produced by the action of urease. Considering the importance of acid-neutralizing bac...

متن کامل

Analyzing Simultaneous Heterotrophic Nitrification and Aerobic Denitrification Potential of a Newly Isolated Bacterium, Bacillus cereus strain GS5 SND by Newly Isolated Bacillus cereus GS5 strain

The present study aims in investigating simultaneous heterotrophic nitrification and aerobic denitrification (SND) ability of a newly isolated bacterium. The bacterial strain GS5 was isolated from a laboratory scale denitrifying bioreactor and characterized. Based on phenotypic and phylogenetic characteristics as derived from partial 16S rRNA gene sequence, the isolate was identified to be Baci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2010